Considerations and practical implications of performing a phenotypic CRISPR/Cas survival screen, PLoS ONE | DeepDyve (2024)

  • Bookmark
  • Add to Folder
  • Cite
  • Social

Loading next page...

Considerations and practical implications of performing a phenotypic CRISPR/Cas survival screen, PLoS ONE | DeepDyve (1)

Considerations and practical implications of performing a phenotypic CRISPR/Cas survival screen, PLoS ONE | DeepDyve (2)

/lp/public-library-of-science-plos-journal/considerations-and-practical-implications-of-performing-a-phenotypic-MOUgIlqdTJ

  • (DasS, ChadwickBP. Influence of repressive histone and DNA methylation upon D4Z4 transcription in non-myogenic cells.PLoS ONE.2016;11: 1–26. doi: 10.1371/journal.pone.016002227467759)

    DasS, ChadwickBP. Influence of repressive histone and DNA methylation upon D4Z4 transcription in non-myogenic cells.PLoS ONE.2016;11: 1–26. doi: 10.1371/journal.pone.016002227467759

    DasS, ChadwickBP. Influence of repressive histone and DNA methylation upon D4Z4 transcription in non-myogenic cells.PLoS ONE.2016;11: 1–26. doi: 10.1371/journal.pone.016002227467759, DasS, ChadwickBP. Influence of repressive histone and DNA methylation upon D4Z4 transcription in non-myogenic cells.PLoS ONE.2016;11: 1–26. doi: 10.1371/journal.pone.016002227467759

  • R. Lemmers, Patrick Vliet, R. Klooster, S. Sacconi, P. Camaño, J. Dauwerse, L. Snider, K. Straasheijm, Gert Ommen, G. Padberg, Daniel Miller, S. Tapscott, R. Tawil, R. Frants, S. Maarel (2010)

    A Unifying Genetic Model for Facioscapulohumeral Muscular Dystrophy

    Science, 329

  • Akihiro Urasaki, Ghislaine Morvan, K. Kawakami (2006)

    Functional Dissection of the Tol2 Transposable Element Identified the Minimal cis-Sequence and a Highly Repetitive Sequence in the Subterminal Region Essential for Transposition

    Genetics, 174

  • Qing Feng, L. Snider, S. Jagannathan, R. Tawil, S. Maarel, S. Tapscott, R. Bradley (2015)

    A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy

    eLife, 4

  • (AnsseauE, VanderplanckC, WautersA, HarperSQ, CoppéeF, BelayewA. Antisense oligonucleotides used to target the DUX4 mRNA as therapeutic approaches in faciosscapulohumeral muscular dystrophy (FSHD). Genes. 2017;8. doi: 10.3390/genes803009328273791)

    AnsseauE, VanderplanckC, WautersA, HarperSQ, CoppéeF, BelayewA. Antisense oligonucleotides used to target the DUX4 mRNA as therapeutic approaches in faciosscapulohumeral muscular dystrophy (FSHD). Genes. 2017;8. doi: 10.3390/genes803009328273791

    AnsseauE, VanderplanckC, WautersA, HarperSQ, CoppéeF, BelayewA. Antisense oligonucleotides used to target the DUX4 mRNA as therapeutic approaches in faciosscapulohumeral muscular dystrophy (FSHD). Genes. 2017;8. doi: 10.3390/genes803009328273791, AnsseauE, VanderplanckC, WautersA, HarperSQ, CoppéeF, BelayewA. Antisense oligonucleotides used to target the DUX4 mRNA as therapeutic approaches in faciosscapulohumeral muscular dystrophy (FSHD). Genes. 2017;8. doi: 10.3390/genes803009328273791

  • (BanerjiCRS, ZammitPS, PanamarovaM. Lymphocytes contribute to DUX4 target genes in 1 FSHD muscle biopsies.Biorxiv. 2019. 10.1101/717652)

    BanerjiCRS, ZammitPS, PanamarovaM. Lymphocytes contribute to DUX4 target genes in 1 FSHD muscle biopsies.Biorxiv. 2019. 10.1101/717652

    BanerjiCRS, ZammitPS, PanamarovaM. Lymphocytes contribute to DUX4 target genes in 1 FSHD muscle biopsies.Biorxiv. 2019. 10.1101/717652, BanerjiCRS, ZammitPS, PanamarovaM. Lymphocytes contribute to DUX4 target genes in 1 FSHD muscle biopsies.Biorxiv. 2019. 10.1101/717652

  • Le Cong, F. Ran, David Cox, Shuailiang Lin, Robert Barretto, Naomi Habib, P. Hsu, Xuebing Wu, Wenyan Jiang, L. Marraffini, Feng Zhang (2013)

    Multiplex Genome Engineering Using CRISPR/Cas Systems

    Science, 339

  • (LuteijnRD, van DiemenF, BlomenVA, BoerIGJ, Manikam SadasivamS, van KuppeveltTH, et al. A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection. Journal of Virology. 2019;93. doi: 10.1128/JVI.02160-1830996093)

    LuteijnRD, van DiemenF, BlomenVA, BoerIGJ, Manikam SadasivamS, van KuppeveltTH, et al. A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection. Journal of Virology. 2019;93. doi: 10.1128/JVI.02160-1830996093

    LuteijnRD, van DiemenF, BlomenVA, BoerIGJ, Manikam SadasivamS, van KuppeveltTH, et al. A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection. Journal of Virology. 2019;93. doi: 10.1128/JVI.02160-1830996093, LuteijnRD, van DiemenF, BlomenVA, BoerIGJ, Manikam SadasivamS, van KuppeveltTH, et al. A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection. Journal of Virology. 2019;93. doi: 10.1128/JVI.02160-1830996093

  • Anita Heuvel, A. Mahfouz, S. Kloet, J. Balog, B. Engelen, R. Tawil, S. Tapscott, S. Maarel (2018)

    Single‐cell RNA sequencing in facioscapulohumeral muscular dystrophy disease etiology and development

    Human Molecular Genetics, 28

  • Sunny Das, B. Chadwick (2016)

    Influence of Repressive Histone and DNA Methylation upon D4Z4 Transcription in Non-Myogenic Cells

    PLoS ONE, 11

  • EY Chen (2013)

    14

    BMC Bioinformatics

  • (BanerjiCRS, KnoppP, MoyleLA, SeveriniS, OrrellRW, TeschendorffAE, et al. β-catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy. Journal of the Royal Society Interface. 2015;12. doi: 10.1098/rsif.2014.079725551153)

    BanerjiCRS, KnoppP, MoyleLA, SeveriniS, OrrellRW, TeschendorffAE, et al. β-catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy. Journal of the Royal Society Interface. 2015;12. doi: 10.1098/rsif.2014.079725551153

    BanerjiCRS, KnoppP, MoyleLA, SeveriniS, OrrellRW, TeschendorffAE, et al. β-catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy. Journal of the Royal Society Interface. 2015;12. doi: 10.1098/rsif.2014.079725551153, BanerjiCRS, KnoppP, MoyleLA, SeveriniS, OrrellRW, TeschendorffAE, et al. β-catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy. Journal of the Royal Society Interface. 2015;12. doi: 10.1098/rsif.2014.079725551153

  • (ShadleSC, ZhongJW, CampbellAE, ConerlyML, JagannathanS, WongCJ, et al. DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy. PLoS Genetics. 2017;13: 1–25. doi: 10.1371/journal.pgen.100665828273136)

    ShadleSC, ZhongJW, CampbellAE, ConerlyML, JagannathanS, WongCJ, et al. DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy. PLoS Genetics. 2017;13: 1–25. doi: 10.1371/journal.pgen.100665828273136

    ShadleSC, ZhongJW, CampbellAE, ConerlyML, JagannathanS, WongCJ, et al. DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy. PLoS Genetics. 2017;13: 1–25. doi: 10.1371/journal.pgen.100665828273136, ShadleSC, ZhongJW, CampbellAE, ConerlyML, JagannathanS, WongCJ, et al. DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy. PLoS Genetics. 2017;13: 1–25. doi: 10.1371/journal.pgen.100665828273136

  • (VuoristoS, Hydén-GranskogC, YoshiharaM, GawriyskiL, DamdimopoulosA, BhagatS, et al. DUX4 regulates oocyte to embryo transition in human.Biorxiv. 2019. 10.1101/732289)

    VuoristoS, Hydén-GranskogC, YoshiharaM, GawriyskiL, DamdimopoulosA, BhagatS, et al. DUX4 regulates oocyte to embryo transition in human.Biorxiv. 2019. 10.1101/732289

    VuoristoS, Hydén-GranskogC, YoshiharaM, GawriyskiL, DamdimopoulosA, BhagatS, et al. DUX4 regulates oocyte to embryo transition in human.Biorxiv. 2019. 10.1101/732289, VuoristoS, Hydén-GranskogC, YoshiharaM, GawriyskiL, DamdimopoulosA, BhagatS, et al. DUX4 regulates oocyte to embryo transition in human.Biorxiv. 2019. 10.1101/732289

  • (BosnakovskiD, ChoiSH, StrasserJM, TosoEA, WaltersMA, KybaM. High-throughput screening identifies inhibitors of DUX4-induced myoblast toxicity.Skeletal Muscle. 2014;4: 1–11. doi: 10.1186/2044-5040-4-124383888)

    BosnakovskiD, ChoiSH, StrasserJM, TosoEA, WaltersMA, KybaM. High-throughput screening identifies inhibitors of DUX4-induced myoblast toxicity.Skeletal Muscle. 2014;4: 1–11. doi: 10.1186/2044-5040-4-124383888

    BosnakovskiD, ChoiSH, StrasserJM, TosoEA, WaltersMA, KybaM. High-throughput screening identifies inhibitors of DUX4-induced myoblast toxicity.Skeletal Muscle. 2014;4: 1–11. doi: 10.1186/2044-5040-4-124383888, BosnakovskiD, ChoiSH, StrasserJM, TosoEA, WaltersMA, KybaM. High-throughput screening identifies inhibitors of DUX4-induced myoblast toxicity.Skeletal Muscle. 2014;4: 1–11. doi: 10.1186/2044-5040-4-124383888

  • (MulherkarN, KuehneAI, KranzuschPJ, AprilM, CaretteJE, RaabenM, et al. Ebola Virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 2012;477: 340–343. doi: 10.1038/nature10348.Ebola)

    MulherkarN, KuehneAI, KranzuschPJ, AprilM, CaretteJE, RaabenM, et al. Ebola Virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 2012;477: 340–343. doi: 10.1038/nature10348.Ebola

    MulherkarN, KuehneAI, KranzuschPJ, AprilM, CaretteJE, RaabenM, et al. Ebola Virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 2012;477: 340–343. doi: 10.1038/nature10348.Ebola, MulherkarN, KuehneAI, KranzuschPJ, AprilM, CaretteJE, RaabenM, et al. Ebola Virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 2012;477: 340–343. doi: 10.1038/nature10348.Ebola

  • CRS Banerji (2017)

    8

    Nature Communications

  • Linda Geng, Zizhen Yao, L. Snider, Abraham Fong, J. Cech, Janet Young, S. Maarel, W. Ruzzo, R. Gentleman, R. Tawil, S. Tapscott (2012)

    DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy.

    Developmental cell, 22 1

  • (CaretteJE, PruszakJ, VaradarajanM, BlomenVA, GokhaleS, CamargoFD, et al. Generation of iPSCs from cultured human malignant cells. Blood. 2010;115: 4039–4042. doi: 10.1182/blood-2009-07-23184520233975)

    CaretteJE, PruszakJ, VaradarajanM, BlomenVA, GokhaleS, CamargoFD, et al. Generation of iPSCs from cultured human malignant cells. Blood. 2010;115: 4039–4042. doi: 10.1182/blood-2009-07-23184520233975

    CaretteJE, PruszakJ, VaradarajanM, BlomenVA, GokhaleS, CamargoFD, et al. Generation of iPSCs from cultured human malignant cells. Blood. 2010;115: 4039–4042. doi: 10.1182/blood-2009-07-23184520233975, CaretteJE, PruszakJ, VaradarajanM, BlomenVA, GokhaleS, CamargoFD, et al. Generation of iPSCs from cultured human malignant cells. Blood. 2010;115: 4039–4042. doi: 10.1182/blood-2009-07-23184520233975

  • S. Agha‐Mohammadi, M. O’Malley, A. Etemad, Zhong Wang, Xiao Xiao, M. Lotze (2004)

    Second‐generation tetracycline‐regulatable promoter: repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness

    The Journal of Gene Medicine, 6

  • S. Winokur, Yi-Wen Chen, P. Masny, Jorge Martin, J. Ehmsen, S. Tapscott, S. Maarel, Y. Hayashi, K. Flanigan (2003)

    Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation.

    Human molecular genetics, 12 22

  • (BlomenVA, MájekP, JaeLT, BigenzahnJW, NieuwenhuisJ, StaringJ, et al. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015;350: 1092–6. doi: 10.1126/science.aac755726472760)

    BlomenVA, MájekP, JaeLT, BigenzahnJW, NieuwenhuisJ, StaringJ, et al. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015;350: 1092–6. doi: 10.1126/science.aac755726472760

    BlomenVA, MájekP, JaeLT, BigenzahnJW, NieuwenhuisJ, StaringJ, et al. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015;350: 1092–6. doi: 10.1126/science.aac755726472760, BlomenVA, MájekP, JaeLT, BigenzahnJW, NieuwenhuisJ, StaringJ, et al. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015;350: 1092–6. doi: 10.1126/science.aac755726472760

  • (van AttekumM, TerpstraS, ReinenE, KaterA, ElderingE. Macrophage-mediated chronic lymphocytic leukemia cell survival is independent of APRIL signaling. Cell Death Discovery. 2016;2. doi: 10.1038/cddiscovery.2016.2027551513)

    van AttekumM, TerpstraS, ReinenE, KaterA, ElderingE. Macrophage-mediated chronic lymphocytic leukemia cell survival is independent of APRIL signaling. Cell Death Discovery. 2016;2. doi: 10.1038/cddiscovery.2016.2027551513

    van AttekumM, TerpstraS, ReinenE, KaterA, ElderingE. Macrophage-mediated chronic lymphocytic leukemia cell survival is independent of APRIL signaling. Cell Death Discovery. 2016;2. doi: 10.1038/cddiscovery.2016.2027551513, van AttekumM, TerpstraS, ReinenE, KaterA, ElderingE. Macrophage-mediated chronic lymphocytic leukemia cell survival is independent of APRIL signaling. Cell Death Discovery. 2016;2. doi: 10.1038/cddiscovery.2016.2027551513

  • (BosnakovskiD, ChanSSK, RechtOO, HartweckLM, GustafsonCJ, AthmanLL, et al. Muscle pathology from stochastic low level DUX4 expression in an FSHD mouse model. Nature Communications. 2017;8: 1–9. doi: 10.1038/s41467-016-0009-628232747)

    BosnakovskiD, ChanSSK, RechtOO, HartweckLM, GustafsonCJ, AthmanLL, et al. Muscle pathology from stochastic low level DUX4 expression in an FSHD mouse model. Nature Communications. 2017;8: 1–9. doi: 10.1038/s41467-016-0009-628232747

    BosnakovskiD, ChanSSK, RechtOO, HartweckLM, GustafsonCJ, AthmanLL, et al. Muscle pathology from stochastic low level DUX4 expression in an FSHD mouse model. Nature Communications. 2017;8: 1–9. doi: 10.1038/s41467-016-0009-628232747, BosnakovskiD, ChanSSK, RechtOO, HartweckLM, GustafsonCJ, AthmanLL, et al. Muscle pathology from stochastic low level DUX4 expression in an FSHD mouse model. Nature Communications. 2017;8: 1–9. doi: 10.1038/s41467-016-0009-628232747

  • C. Banerji, M. Panamarova, H. Hebaishi, Robert White, F. Relaix, S. Severini, P. Zammit (2017)

    PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle

    Nature Communications, 8

  • Max Shen, Mandana Arbab, Jonathan Hsu, D. Worstell, Sannie Culbertson, Olga Krabbe, C. Cassa, David Liu, D. Gifford, R. Sherwood (2018)

    Predictable and precise template-free CRISPR editing of pathogenic variants

    Nature, 563

  • (OlbrichT, Vega-SendinoM, MurgaM, de CarcerG, MalumbresM, OrtegaS, et al. A Chemical Screen Identifies Compounds Capable of Selecting for Haploidy in Mammalian Cells. Cell Reports. 2019;28: 597–604.e4. doi: 10.1016/j.celrep.2019.06.06031315040)

    OlbrichT, Vega-SendinoM, MurgaM, de CarcerG, MalumbresM, OrtegaS, et al. A Chemical Screen Identifies Compounds Capable of Selecting for Haploidy in Mammalian Cells. Cell Reports. 2019;28: 597–604.e4. doi: 10.1016/j.celrep.2019.06.06031315040

    OlbrichT, Vega-SendinoM, MurgaM, de CarcerG, MalumbresM, OrtegaS, et al. A Chemical Screen Identifies Compounds Capable of Selecting for Haploidy in Mammalian Cells. Cell Reports. 2019;28: 597–604.e4. doi: 10.1016/j.celrep.2019.06.06031315040, OlbrichT, Vega-SendinoM, MurgaM, de CarcerG, MalumbresM, OrtegaS, et al. A Chemical Screen Identifies Compounds Capable of Selecting for Haploidy in Mammalian Cells. Cell Reports. 2019;28: 597–604.e4. doi: 10.1016/j.celrep.2019.06.06031315040

  • (CullotG, BoutinJ, ToutainJ, PratF, PennamenP, RooryckC, et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nature Communications. 2019;10: 1–14. doi: 10.1038/s41467-018-07882-830602773)

    CullotG, BoutinJ, ToutainJ, PratF, PennamenP, RooryckC, et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nature Communications. 2019;10: 1–14. doi: 10.1038/s41467-018-07882-830602773

    CullotG, BoutinJ, ToutainJ, PratF, PennamenP, RooryckC, et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nature Communications. 2019;10: 1–14. doi: 10.1038/s41467-018-07882-830602773, CullotG, BoutinJ, ToutainJ, PratF, PennamenP, RooryckC, et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nature Communications. 2019;10: 1–14. doi: 10.1038/s41467-018-07882-830602773

  • A. Lek, Yuanfan Zhang, K. Woodman, Shushu Huang, A. DeSimone, Justin Cohen, Vincent Ho, J. Conner, L. Mead, Andrew Kodani, A. Pakuła, Neville Sanjana, O. King, Peter Jones, K. Wagner, M. Lek, L. Kunkel (2020)

    Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy

    Science Translational Medicine, 12

  • (JaeLT, RaabenM, RiemersmaM, BeusekomE Van, BlomenVA, VeldsA, et al. Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry.2014;340: 479–483. doi: 10.1126/science.1233675.Deciphering)

    JaeLT, RaabenM, RiemersmaM, BeusekomE Van, BlomenVA, VeldsA, et al. Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry.2014;340: 479–483. doi: 10.1126/science.1233675.Deciphering

    JaeLT, RaabenM, RiemersmaM, BeusekomE Van, BlomenVA, VeldsA, et al. Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry.2014;340: 479–483. doi: 10.1126/science.1233675.Deciphering, JaeLT, RaabenM, RiemersmaM, BeusekomE Van, BlomenVA, VeldsA, et al. Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry.2014;340: 479–483. doi: 10.1126/science.1233675.Deciphering

  • (KnoppP, KromYD, BanerjiCRS, PanamarovaM, MoyleLA, den HamerB, et al. DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis. Journal of Cell Science. 2016;129: 3816–3831. doi: 10.1242/jcs.18037227744317)

    KnoppP, KromYD, BanerjiCRS, PanamarovaM, MoyleLA, den HamerB, et al. DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis. Journal of Cell Science. 2016;129: 3816–3831. doi: 10.1242/jcs.18037227744317

    KnoppP, KromYD, BanerjiCRS, PanamarovaM, MoyleLA, den HamerB, et al. DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis. Journal of Cell Science. 2016;129: 3816–3831. doi: 10.1242/jcs.18037227744317, KnoppP, KromYD, BanerjiCRS, PanamarovaM, MoyleLA, den HamerB, et al. DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis. Journal of Cell Science. 2016;129: 3816–3831. doi: 10.1242/jcs.18037227744317

  • (LemmersRJ, Van Der VlietPJ, BalogJ, GoemanJJ, ArindrartoW, KromYD, et al. Deep characterization of a common D4Z4 variant identifies biallelic DUX4 expression as a modifier for disease penetrance in FSHD2. European Journal of Human Genetics. 2018;26: 94–106. doi: 10.1038/s41431-017-0015-029162933)

    LemmersRJ, Van Der VlietPJ, BalogJ, GoemanJJ, ArindrartoW, KromYD, et al. Deep characterization of a common D4Z4 variant identifies biallelic DUX4 expression as a modifier for disease penetrance in FSHD2. European Journal of Human Genetics. 2018;26: 94–106. doi: 10.1038/s41431-017-0015-029162933

    LemmersRJ, Van Der VlietPJ, BalogJ, GoemanJJ, ArindrartoW, KromYD, et al. Deep characterization of a common D4Z4 variant identifies biallelic DUX4 expression as a modifier for disease penetrance in FSHD2. European Journal of Human Genetics. 2018;26: 94–106. doi: 10.1038/s41431-017-0015-029162933, LemmersRJ, Van Der VlietPJ, BalogJ, GoemanJJ, ArindrartoW, KromYD, et al. Deep characterization of a common D4Z4 variant identifies biallelic DUX4 expression as a modifier for disease penetrance in FSHD2. European Journal of Human Genetics. 2018;26: 94–106. doi: 10.1038/s41431-017-0015-029162933

  • (CongL, RanFA, CoxD, LinS, BarrettoR, HsuPD, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 2013;339: 819–823. doi: 10.1126/science.123114323287718)

    CongL, RanFA, CoxD, LinS, BarrettoR, HsuPD, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 2013;339: 819–823. doi: 10.1126/science.123114323287718

    CongL, RanFA, CoxD, LinS, BarrettoR, HsuPD, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 2013;339: 819–823. doi: 10.1126/science.123114323287718, CongL, RanFA, CoxD, LinS, BarrettoR, HsuPD, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 2013;339: 819–823. doi: 10.1126/science.123114323287718

  • (TawilR, Van Der MaarelSM. Facioscapulohumeral muscular dystrophy. Muscle and Nerve. 2006;34: 1–15. doi: 10.1002/mus.2052216508966)

    TawilR, Van Der MaarelSM. Facioscapulohumeral muscular dystrophy. Muscle and Nerve. 2006;34: 1–15. doi: 10.1002/mus.2052216508966

    TawilR, Van Der MaarelSM. Facioscapulohumeral muscular dystrophy. Muscle and Nerve. 2006;34: 1–15. doi: 10.1002/mus.2052216508966, TawilR, Van Der MaarelSM. Facioscapulohumeral muscular dystrophy. Muscle and Nerve. 2006;34: 1–15. doi: 10.1002/mus.2052216508966

  • CRS Banerji (2015)

    12

    Journal of the Royal Society Interface

  • M. Love, W. Huber, S. Anders (2014)

    Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

    Genome Biology, 15

  • D. Bosnakovski, Sarah Lamb, T. Şimşek, Zhaohui Xu, A. Belayew, R. Perlingeiro, M. Kyba (2008)

    DUX4c, an FSHD candidate gene, interferes with myogenic regulators and abolishes myoblast differentiation

    Experimental Neurology, 214

  • (HashimshonyT, SenderovichN, AvitalG, KlochendlerA, de LeeuwY, AnavyL, et al. CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq. Genome Biology. 2016;17: 1–7. doi: 10.1186/s13059-015-0866-z26753840)

    HashimshonyT, SenderovichN, AvitalG, KlochendlerA, de LeeuwY, AnavyL, et al. CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq. Genome Biology. 2016;17: 1–7. doi: 10.1186/s13059-015-0866-z26753840

    HashimshonyT, SenderovichN, AvitalG, KlochendlerA, de LeeuwY, AnavyL, et al. CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq. Genome Biology. 2016;17: 1–7. doi: 10.1186/s13059-015-0866-z26753840, HashimshonyT, SenderovichN, AvitalG, KlochendlerA, de LeeuwY, AnavyL, et al. CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq. Genome Biology. 2016;17: 1–7. doi: 10.1186/s13059-015-0866-z26753840

  • (BarrangouR, FremauxR, DeveauH, RichardsM, BoyavalP, MoineauS, et al. CRISPR provides acquired resistance against viruses in prokaryotes.Sciencee. 2007;315: 1709–1712. doi: 10.1126/science.113814017379808)

    BarrangouR, FremauxR, DeveauH, RichardsM, BoyavalP, MoineauS, et al. CRISPR provides acquired resistance against viruses in prokaryotes.Sciencee. 2007;315: 1709–1712. doi: 10.1126/science.113814017379808

    BarrangouR, FremauxR, DeveauH, RichardsM, BoyavalP, MoineauS, et al. CRISPR provides acquired resistance against viruses in prokaryotes.Sciencee. 2007;315: 1709–1712. doi: 10.1126/science.113814017379808, BarrangouR, FremauxR, DeveauH, RichardsM, BoyavalP, MoineauS, et al. CRISPR provides acquired resistance against viruses in prokaryotes.Sciencee. 2007;315: 1709–1712. doi: 10.1126/science.113814017379808

  • N Mulherkar (2012)

    340

    Nature, 477

  • D Bosnakovski (2017)

    3685

    Journal of Cell Science, 130

  • T. Hashimshony, F. Wagner, Noa Sher, I. Yanai (2012)

    CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification.

    Cell reports, 2 3

  • M Bibikova (2002)

    1169

    Genetics, 161

  • (EssletzbichlerP, KonopkaT, SantoroF, ChenD, GappB V., KralovicsR, et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Research. 2014;24: 2059–2065. doi: 10.1101/gr.177220.11425373145)

    EssletzbichlerP, KonopkaT, SantoroF, ChenD, GappB V., KralovicsR, et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Research. 2014;24: 2059–2065. doi: 10.1101/gr.177220.11425373145

    EssletzbichlerP, KonopkaT, SantoroF, ChenD, GappB V., KralovicsR, et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Research. 2014;24: 2059–2065. doi: 10.1101/gr.177220.11425373145, EssletzbichlerP, KonopkaT, SantoroF, ChenD, GappB V., KralovicsR, et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Research. 2014;24: 2059–2065. doi: 10.1101/gr.177220.11425373145

  • Maxim Kuleshov, Matthew Jones, A. Rouillard, Nicolas Fernandez, Qiaonan Duan, Zichen Wang, Simon Koplev, S. Jenkins, Kathleen Jagodnik, Alexander Lachmann, Michael McDermott, Caroline Monteiro, Gregory Gundersen, Avi Ma’ayan (2016)

    Enrichr: a comprehensive gene set enrichment analysis web server 2016 update

    Nucleic Acids Research, 44

  • Dominic Grün, A. Lyubimova, L. Kester, K. Wiebrands, O. Basak, Nobuo Sasaki, H. Clevers, A. Oudenaarden (2015)

    Single-cell messenger RNA sequencing reveals rare intestinal cell types

    Nature, 525

  • E. Pastorello, Michelangelo Cao, C. Trevisan (2012)

    Atypical onset in a series of 122 cases with FacioScapuloHumeral Muscular Dystrophy

    Clinical Neurology and Neurosurgery, 114

  • (DmitrievP, Bou SaadaY, DibC, AnsseauE, BaratA, HamadeA, et al. DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients. Free Radical Biology and Medicine. 2016;99: 244–258. doi: 10.1016/j.freeradbiomed.2016.08.00727519269)

    DmitrievP, Bou SaadaY, DibC, AnsseauE, BaratA, HamadeA, et al. DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients. Free Radical Biology and Medicine. 2016;99: 244–258. doi: 10.1016/j.freeradbiomed.2016.08.00727519269

    DmitrievP, Bou SaadaY, DibC, AnsseauE, BaratA, HamadeA, et al. DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients. Free Radical Biology and Medicine. 2016;99: 244–258. doi: 10.1016/j.freeradbiomed.2016.08.00727519269, DmitrievP, Bou SaadaY, DibC, AnsseauE, BaratA, HamadeA, et al. DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients. Free Radical Biology and Medicine. 2016;99: 244–258. doi: 10.1016/j.freeradbiomed.2016.08.00727519269

  • (BrounsSJ, JoreMM, LundgrenM, WestraER, SlijkhuisR, SnijdersA, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321: 960–964. doi: 10.1126/science.115968918703739)

    BrounsSJ, JoreMM, LundgrenM, WestraER, SlijkhuisR, SnijdersA, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321: 960–964. doi: 10.1126/science.115968918703739

    BrounsSJ, JoreMM, LundgrenM, WestraER, SlijkhuisR, SnijdersA, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321: 960–964. doi: 10.1126/science.115968918703739, BrounsSJ, JoreMM, LundgrenM, WestraER, SlijkhuisR, SnijdersA, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321: 960–964. doi: 10.1126/science.115968918703739

  • (HimedaCL, JonesTI, JonesPL. CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Molecular Therapy. 2016;24: 527–535. doi: 10.1038/mt.2015.20026527377)

    HimedaCL, JonesTI, JonesPL. CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Molecular Therapy. 2016;24: 527–535. doi: 10.1038/mt.2015.20026527377

    HimedaCL, JonesTI, JonesPL. CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Molecular Therapy. 2016;24: 527–535. doi: 10.1038/mt.2015.20026527377, HimedaCL, JonesTI, JonesPL. CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Molecular Therapy. 2016;24: 527–535. doi: 10.1038/mt.2015.20026527377

  • (WangT, BirsoyK, HughesNW, KrupczakKM, PostY, WeiJJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350: 1096–1101. doi: 10.1126/science.aac704126472758)

    WangT, BirsoyK, HughesNW, KrupczakKM, PostY, WeiJJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350: 1096–1101. doi: 10.1126/science.aac704126472758

    WangT, BirsoyK, HughesNW, KrupczakKM, PostY, WeiJJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350: 1096–1101. doi: 10.1126/science.aac704126472758, WangT, BirsoyK, HughesNW, KrupczakKM, PostY, WeiJJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350: 1096–1101. doi: 10.1126/science.aac704126472758

  • M. Attekum, S. Terpstra, E. Reinen, A. Kater, E. Eldering (2016)

    Macrophage-mediated chronic lymphocytic leukemia cell survival is independent of APRIL signaling

    Cell Death Discovery, 2

  • L. Snider, Linda Geng, R. Lemmers, M. Kyba, C. Ware, Angelique Nelson, R. Tawil, G. Filippova, S. Maarel, S. Tapscott, Daniel Miller (2010)

    Facioscapulohumeral Dystrophy: Incomplete Suppression of a Retrotransposed Gene

    PLoS Genetics, 6

  • Supplementary Discussion
  • Teresa Olbrich, Maria Vega-Sendino, M. Murga, G. Cárcer, Marcos Malumbres, S. Ortega, Sergio Ruiz, O. Fernandez-Capetillo (2019)

    A Chemical Screen Identifies Compounds Capable of Selecting for Haploidy in Mammalian Cells

    Cell Reports, 28

  • (BosnakovskiD, LambS, SimsekT, XuZ, BelayewA, PerlingeiroR, et al. DUX4c, an FSHD candidate gene, interferes with myogenic regulators and abolishes myoblast differentiation. Experimental Neurology. 2008;214: 87–96. doi: 10.1016/j.expneurol.2008.07.02218723017)

    BosnakovskiD, LambS, SimsekT, XuZ, BelayewA, PerlingeiroR, et al. DUX4c, an FSHD candidate gene, interferes with myogenic regulators and abolishes myoblast differentiation. Experimental Neurology. 2008;214: 87–96. doi: 10.1016/j.expneurol.2008.07.02218723017

    BosnakovskiD, LambS, SimsekT, XuZ, BelayewA, PerlingeiroR, et al. DUX4c, an FSHD candidate gene, interferes with myogenic regulators and abolishes myoblast differentiation. Experimental Neurology. 2008;214: 87–96. doi: 10.1016/j.expneurol.2008.07.02218723017, BosnakovskiD, LambS, SimsekT, XuZ, BelayewA, PerlingeiroR, et al. DUX4c, an FSHD candidate gene, interferes with myogenic regulators and abolishes myoblast differentiation. Experimental Neurology. 2008;214: 87–96. doi: 10.1016/j.expneurol.2008.07.02218723017

  • J. Carette, M. Raaben, A. Wong, A. Herbert, G. Obernosterer, N. Mulherkar, A. Kuehne, P. Kranzusch, A. Griffin, G. Ruthel, P. Cin, J. Dye, S. Whelan, K. Chandran, T. Brummelkamp (2011)

    Ebola virus entry requires the cholesterol transporter Niemann-Pick C1

    Nature, 477

  • T. Hashimshony, N. Senderovich, Gal Avital, A. Klochendler, Yaron Leeuw, Leon Anavy, David Gennert, Shuqiang Li, K. Livak, O. Rozenblatt-Rosen, Y. Dor, A. Regev, I. Yanai (2016)

    CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq

    Genome Biology, 17

  • (JagannathanS, ShadleSC, ResnickR, SniderL, TawilRN, van der MaarelSM, et al. Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells. Human Molecular Genetics. 2016;25: ddw271. doi: 10.1093/hmg/ddw27128171552)

    JagannathanS, ShadleSC, ResnickR, SniderL, TawilRN, van der MaarelSM, et al. Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells. Human Molecular Genetics. 2016;25: ddw271. doi: 10.1093/hmg/ddw27128171552

    JagannathanS, ShadleSC, ResnickR, SniderL, TawilRN, van der MaarelSM, et al. Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells. Human Molecular Genetics. 2016;25: ddw271. doi: 10.1093/hmg/ddw27128171552, JagannathanS, ShadleSC, ResnickR, SniderL, TawilRN, van der MaarelSM, et al. Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells. Human Molecular Genetics. 2016;25: ddw271. doi: 10.1093/hmg/ddw27128171552

  • T Wang (2015)

    1096

    Science, 350

  • L. Jae, M. Raaben, M. Riemersma, E. Beusekom, V. Blomen, A. Velds, R. Kerkhoven, J. Carette, H. Topaloğlu, P. Meinecke, M. Wessels, D. Lefeber, S. Whelan, H. Bokhoven, T. Brummelkamp (2013)

    Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry

    Science, 340

  • (ChristianM, CermakT, DoyleEL, SchmidtC, ZhangF, HummelA, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186: 756–761. doi: 10.1534/genetics.110.12071720660643)

    ChristianM, CermakT, DoyleEL, SchmidtC, ZhangF, HummelA, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186: 756–761. doi: 10.1534/genetics.110.12071720660643

    ChristianM, CermakT, DoyleEL, SchmidtC, ZhangF, HummelA, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186: 756–761. doi: 10.1534/genetics.110.12071720660643, ChristianM, CermakT, DoyleEL, SchmidtC, ZhangF, HummelA, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186: 756–761. doi: 10.1534/genetics.110.12071720660643

  • Stan Brouns, M. Jore, Magnus Lundgren, E. Westra, R. Slijkhuis, A. Snijders, M. Dickman, K. Makarova, E. Koonin, J. Oost (2008)

    Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes

    Science, 321

  • (BosnakovskiD, XuZ, Ji GangE, GalindoCL, LiuM, SimsekT, et al. An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO Journal. 2008;27: 2766–2779. doi: 10.1038/emboj.2008.20118833193)

    BosnakovskiD, XuZ, Ji GangE, GalindoCL, LiuM, SimsekT, et al. An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO Journal. 2008;27: 2766–2779. doi: 10.1038/emboj.2008.20118833193

    BosnakovskiD, XuZ, Ji GangE, GalindoCL, LiuM, SimsekT, et al. An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO Journal. 2008;27: 2766–2779. doi: 10.1038/emboj.2008.20118833193, BosnakovskiD, XuZ, Ji GangE, GalindoCL, LiuM, SimsekT, et al. An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO Journal. 2008;27: 2766–2779. doi: 10.1038/emboj.2008.20118833193

  • (HashimshonyT, WagnerF, SherN, YanaiI. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Reports. 2012;2: 666–673. doi: 10.1016/j.celrep.2012.08.00322939981)

    HashimshonyT, WagnerF, SherN, YanaiI. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Reports. 2012;2: 666–673. doi: 10.1016/j.celrep.2012.08.00322939981

    HashimshonyT, WagnerF, SherN, YanaiI. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Reports. 2012;2: 666–673. doi: 10.1016/j.celrep.2012.08.00322939981, HashimshonyT, WagnerF, SherN, YanaiI. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Reports. 2012;2: 666–673. doi: 10.1016/j.celrep.2012.08.00322939981

  • B. Andersson, M. Beran, S. Pathak, A. Goodacre, B. Barlogie, K. McCredie (1987)

    Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern.

    Cancer genetics and cytogenetics, 24 2

  • (JinekM, EastA, ChengA, LinS, MaE, DoudnaJ. RNA-programmed genome editing in human cells. eLife. 2013;2013: 1–9. doi: 10.7554/eLife.0047123386978)

    JinekM, EastA, ChengA, LinS, MaE, DoudnaJ. RNA-programmed genome editing in human cells. eLife. 2013;2013: 1–9. doi: 10.7554/eLife.0047123386978

    JinekM, EastA, ChengA, LinS, MaE, DoudnaJ. RNA-programmed genome editing in human cells. eLife. 2013;2013: 1–9. doi: 10.7554/eLife.0047123386978, JinekM, EastA, ChengA, LinS, MaE, DoudnaJ. RNA-programmed genome editing in human cells. eLife. 2013;2013: 1–9. doi: 10.7554/eLife.0047123386978

  • (MezzadraR, De BruijnM, JaeLT, Gomez-EerlandR, DuursmaA, ScheerenFA, et al. SLFN11 can sensitize tumor cells towards IFN-γ-mediated T cell killing. PLoS ONE. 2019;14: 1–16. doi: 10.1371/journal.pone.021205330753225)

    MezzadraR, De BruijnM, JaeLT, Gomez-EerlandR, DuursmaA, ScheerenFA, et al. SLFN11 can sensitize tumor cells towards IFN-γ-mediated T cell killing. PLoS ONE. 2019;14: 1–16. doi: 10.1371/journal.pone.021205330753225

    MezzadraR, De BruijnM, JaeLT, Gomez-EerlandR, DuursmaA, ScheerenFA, et al. SLFN11 can sensitize tumor cells towards IFN-γ-mediated T cell killing. PLoS ONE. 2019;14: 1–16. doi: 10.1371/journal.pone.021205330753225, MezzadraR, De BruijnM, JaeLT, Gomez-EerlandR, DuursmaA, ScheerenFA, et al. SLFN11 can sensitize tumor cells towards IFN-γ-mediated T cell killing. PLoS ONE. 2019;14: 1–16. doi: 10.1371/journal.pone.021205330753225

  • Kendall Sanson, Ruth Hanna, Mudra Hegde, Katherine Donovan, Christine Strand, Meagan Sullender, Emma Vaimberg, A. Goodale, D. Root, F. Piccioni, John Doench (2018)

    Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities

    Nature Communications, 9

  • Yang-Gyun Kim, Pearl Kim, Alan Herbert, Alexander Rich (1997)

    Construction of a Z-DNA-specific restriction endonuclease.

    Proceedings of the National Academy of Sciences of the United States of America, 94 24

  • P. Knopp, Y. Krom, C. Banerji, M. Panamarova, L. Moyle, B. Hamer, S. Maarel, P. Zammit (2016)

    DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis

    Journal of Cell Science, 129

  • (MillerJC, TanS, QiaoG, BarlowKA, WangJ, XiaDF, et al. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology. 2011;29: 143–150. doi: 10.1038/nbt.175521179091)

    MillerJC, TanS, QiaoG, BarlowKA, WangJ, XiaDF, et al. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology. 2011;29: 143–150. doi: 10.1038/nbt.175521179091

    MillerJC, TanS, QiaoG, BarlowKA, WangJ, XiaDF, et al. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology. 2011;29: 143–150. doi: 10.1038/nbt.175521179091, MillerJC, TanS, QiaoG, BarlowKA, WangJ, XiaDF, et al. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology. 2011;29: 143–150. doi: 10.1038/nbt.175521179091

  • (PapatheodorouaP, CaretteJE, BellGW, SchwanC, GuttenbergG, BrummelkampTR, et al. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT).Proceedings of the National Academy of Sciences of the United States of America. 2011;108: 16422–16427. doi: 10.1073/pnas.110977210821930894)

    PapatheodorouaP, CaretteJE, BellGW, SchwanC, GuttenbergG, BrummelkampTR, et al. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT).Proceedings of the National Academy of Sciences of the United States of America. 2011;108: 16422–16427. doi: 10.1073/pnas.110977210821930894

    PapatheodorouaP, CaretteJE, BellGW, SchwanC, GuttenbergG, BrummelkampTR, et al. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT).Proceedings of the National Academy of Sciences of the United States of America. 2011;108: 16422–16427. doi: 10.1073/pnas.110977210821930894, PapatheodorouaP, CaretteJE, BellGW, SchwanC, GuttenbergG, BrummelkampTR, et al. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT).Proceedings of the National Academy of Sciences of the United States of America. 2011;108: 16422–16427. doi: 10.1073/pnas.110977210821930894

  • (YuJSL, YusaK. Genome-wide CRISPR-Cas9 screening in mammalian cells. Methods. 2019;164–165: 29–35. doi: 10.1016/j.ymeth.2019.04.01531034882)

    YuJSL, YusaK. Genome-wide CRISPR-Cas9 screening in mammalian cells. Methods. 2019;164–165: 29–35. doi: 10.1016/j.ymeth.2019.04.01531034882

    YuJSL, YusaK. Genome-wide CRISPR-Cas9 screening in mammalian cells. Methods. 2019;164–165: 29–35. doi: 10.1016/j.ymeth.2019.04.01531034882, YuJSL, YusaK. Genome-wide CRISPR-Cas9 screening in mammalian cells. Methods. 2019;164–165: 29–35. doi: 10.1016/j.ymeth.2019.04.01531034882

  • D. Bosnakovski, Zhaohui Xu, Eun Gang, C. Galindo, Mingju Liu, T. Şimşek, H. Garner, S. Agha‐Mohammadi, A. Tassin, F. Coppée, A. Belayew, R. Perlingeiro, M. Kyba (2008)

    An isogenetic myoblast expression screen identifies DUX4‐mediated FSHD‐associated molecular pathologies

    The EMBO Journal, 27

  • (LekA, ZhangY, WoodmanKG, HuangS, DeSimoneAM, CohenJ, et al. Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Science Translational Medicine. 2020;12: 9–11. doi: 10.1126/scitranslmed.aay027132213627)

    LekA, ZhangY, WoodmanKG, HuangS, DeSimoneAM, CohenJ, et al. Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Science Translational Medicine. 2020;12: 9–11. doi: 10.1126/scitranslmed.aay027132213627

    LekA, ZhangY, WoodmanKG, HuangS, DeSimoneAM, CohenJ, et al. Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Science Translational Medicine. 2020;12: 9–11. doi: 10.1126/scitranslmed.aay027132213627, LekA, ZhangY, WoodmanKG, HuangS, DeSimoneAM, CohenJ, et al. Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Science Translational Medicine. 2020;12: 9–11. doi: 10.1126/scitranslmed.aay027132213627

  • (JonesTI, HimedaCL, PerezDP, JonesPL. Large family cohorts of lymphoblastoid cells provide a new cellular model for investigating facioscapulohumeral muscular dystrophy. Neuromuscular Disorders. 2017;27: 221–238. doi: 10.1016/j.nmd.2016.12.00728161093)

    JonesTI, HimedaCL, PerezDP, JonesPL. Large family cohorts of lymphoblastoid cells provide a new cellular model for investigating facioscapulohumeral muscular dystrophy. Neuromuscular Disorders. 2017;27: 221–238. doi: 10.1016/j.nmd.2016.12.00728161093

    JonesTI, HimedaCL, PerezDP, JonesPL. Large family cohorts of lymphoblastoid cells provide a new cellular model for investigating facioscapulohumeral muscular dystrophy. Neuromuscular Disorders. 2017;27: 221–238. doi: 10.1016/j.nmd.2016.12.00728161093, JonesTI, HimedaCL, PerezDP, JonesPL. Large family cohorts of lymphoblastoid cells provide a new cellular model for investigating facioscapulohumeral muscular dystrophy. Neuromuscular Disorders. 2017;27: 221–238. doi: 10.1016/j.nmd.2016.12.00728161093

  • (ChenEY, TanCM, KouY, DuanQ, WangZ, Meirelles GV., et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14. doi: 10.1186/1471-2105-14-1423323936)

    ChenEY, TanCM, KouY, DuanQ, WangZ, Meirelles GV., et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14. doi: 10.1186/1471-2105-14-1423323936

    ChenEY, TanCM, KouY, DuanQ, WangZ, Meirelles GV., et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14. doi: 10.1186/1471-2105-14-1423323936, ChenEY, TanCM, KouY, DuanQ, WangZ, Meirelles GV., et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14. doi: 10.1186/1471-2105-14-1423323936

  • Michelle Christian, T. Čermák, Erin Doyle, Clarice Schmidt, Feng Zhang, Aaron Hummel, A. Bogdanove, D. Voytas (2010)

    Targeting DNA Double-Strand Breaks with TAL Effector Nucleases

    Genetics, 186

  • (LoveMI, HuberW, AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15: 1–21. doi: 10.1186/s13059-014-0550-825516281)

    LoveMI, HuberW, AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15: 1–21. doi: 10.1186/s13059-014-0550-825516281

    LoveMI, HuberW, AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15: 1–21. doi: 10.1186/s13059-014-0550-825516281, LoveMI, HuberW, AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15: 1–21. doi: 10.1186/s13059-014-0550-825516281

  • (DixitM, AnsseauE, TassinA, WinokurS, ShiR, QianH, et al. DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proceedings of the National Academy of Sciences of the United States of America. 2007;104: 18157–18162. doi: 10.1073/pnas.070865910417984056)

    DixitM, AnsseauE, TassinA, WinokurS, ShiR, QianH, et al. DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proceedings of the National Academy of Sciences of the United States of America. 2007;104: 18157–18162. doi: 10.1073/pnas.070865910417984056

    DixitM, AnsseauE, TassinA, WinokurS, ShiR, QianH, et al. DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proceedings of the National Academy of Sciences of the United States of America. 2007;104: 18157–18162. doi: 10.1073/pnas.070865910417984056, DixitM, AnsseauE, TassinA, WinokurS, ShiR, QianH, et al. DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proceedings of the National Academy of Sciences of the United States of America. 2007;104: 18157–18162. doi: 10.1073/pnas.070865910417984056

  • D. Bosnakovski, Sunny Chan, Olivia Recht, L. Hartweck, Collin Gustafson, Laura Athman, D. Lowe, M. Kyba (2017)

    Muscle pathology from stochastic low level DUX4 expression in an FSHD mouse model

    Nature Communications, 8

  • (PastorelloE, CaoM, TrevisanCP. Atypical onset in a series of 122 cases with FacioScapuloHumeral Muscular Dystrophy. Clinical Neurology and Neurosurgery. 2012;114: 230–234. doi: 10.1016/j.clineuro.2011.10.02222079131)

    PastorelloE, CaoM, TrevisanCP. Atypical onset in a series of 122 cases with FacioScapuloHumeral Muscular Dystrophy. Clinical Neurology and Neurosurgery. 2012;114: 230–234. doi: 10.1016/j.clineuro.2011.10.02222079131

    PastorelloE, CaoM, TrevisanCP. Atypical onset in a series of 122 cases with FacioScapuloHumeral Muscular Dystrophy. Clinical Neurology and Neurosurgery. 2012;114: 230–234. doi: 10.1016/j.clineuro.2011.10.02222079131, PastorelloE, CaoM, TrevisanCP. Atypical onset in a series of 122 cases with FacioScapuloHumeral Muscular Dystrophy. Clinical Neurology and Neurosurgery. 2012;114: 230–234. doi: 10.1016/j.clineuro.2011.10.02222079131

  • C. Mussolino, Robert Morbitzer, Fabienne Lütge, N. Dannemann, T. Lahaye, T. Cathomen (2011)

    A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity

    Nucleic Acids Research, 39

  • (AnderssonBS, BeranM, PathakS, GoodacreA, BarlogieB, McCredieKB. Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genetics and Cytogenetics. 1987;24: 335–343. doi: 10.1016/0165-4608(87)90116-63466682)

    AnderssonBS, BeranM, PathakS, GoodacreA, BarlogieB, McCredieKB. Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genetics and Cytogenetics. 1987;24: 335–343. doi: 10.1016/0165-4608(87)90116-63466682

    AnderssonBS, BeranM, PathakS, GoodacreA, BarlogieB, McCredieKB. Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genetics and Cytogenetics. 1987;24: 335–343. doi: 10.1016/0165-4608(87)90116-63466682, AnderssonBS, BeranM, PathakS, GoodacreA, BarlogieB, McCredieKB. Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genetics and Cytogenetics. 1987;24: 335–343. doi: 10.1016/0165-4608(87)90116-63466682

  • Jennifer Whiddon, Ashlee Langford, Chao-Jen Wong, Jun Zhong, S. Tapscott (2017)

    Conservation and innovation in the DUX4-family gene network

    Nature genetics, 49

  • S. Jagannathan, Sean Shadle, R. Resnick, L. Snider, R. Tawil, S. Maarel, R. Bradley, S. Tapscott (2016)

    Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells.

    Human molecular genetics, 25 20

  • (BibikovaM, GolicM, GolicKG, CarrollD. Targeted Chromosomal Cleavage and Mutagenesis in Drosophila Using Zinc-Finger Nucleases. Genetics. 2002;161: 1169–1175. doi: 10.1093/genetics/161.3.116912136019)

    BibikovaM, GolicM, GolicKG, CarrollD. Targeted Chromosomal Cleavage and Mutagenesis in Drosophila Using Zinc-Finger Nucleases. Genetics. 2002;161: 1169–1175. doi: 10.1093/genetics/161.3.116912136019

    BibikovaM, GolicM, GolicKG, CarrollD. Targeted Chromosomal Cleavage and Mutagenesis in Drosophila Using Zinc-Finger Nucleases. Genetics. 2002;161: 1169–1175. doi: 10.1093/genetics/161.3.116912136019, BibikovaM, GolicM, GolicKG, CarrollD. Targeted Chromosomal Cleavage and Mutagenesis in Drosophila Using Zinc-Finger Nucleases. Genetics. 2002;161: 1169–1175. doi: 10.1093/genetics/161.3.116912136019

  • J. Carette, J. Pruszak, Malini Varadarajan, V. Blomen, S. Gokhale, F. Camargo, Marius Wernig, R. Jaenisch, T. Brummelkamp (2010)

    Generation of iPSCs from cultured human malignant cells.

    Blood, 115 20

  • J. Soutourina (2017)

    Transcription regulation by the Mediator complex

    Nature Reviews Molecular Cell Biology, 19

  • (SniderL, GengLN, LemmersRJLF, KybaM, WareCB, NelsonAM, et al. Facioscapulohumeral dystrophy: Incomplete suppression of a retrotransposed gene. PLoS Genetics. 2010;6: 1–14. doi: 10.1371/journal.pgen.100118121060811)

    SniderL, GengLN, LemmersRJLF, KybaM, WareCB, NelsonAM, et al. Facioscapulohumeral dystrophy: Incomplete suppression of a retrotransposed gene. PLoS Genetics. 2010;6: 1–14. doi: 10.1371/journal.pgen.100118121060811

    SniderL, GengLN, LemmersRJLF, KybaM, WareCB, NelsonAM, et al. Facioscapulohumeral dystrophy: Incomplete suppression of a retrotransposed gene. PLoS Genetics. 2010;6: 1–14. doi: 10.1371/journal.pgen.100118121060811, SniderL, GengLN, LemmersRJLF, KybaM, WareCB, NelsonAM, et al. Facioscapulohumeral dystrophy: Incomplete suppression of a retrotransposed gene. PLoS Genetics. 2010;6: 1–14. doi: 10.1371/journal.pgen.100118121060811

  • (KuleshovMV., JonesMR, RouillardAD, FernandezNF, DuanQ, WangZ, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic acids research. 2016;44: W90–W97. doi: 10.1093/nar/gkw37727141961)

    KuleshovMV., JonesMR, RouillardAD, FernandezNF, DuanQ, WangZ, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic acids research. 2016;44: W90–W97. doi: 10.1093/nar/gkw37727141961

    KuleshovMV., JonesMR, RouillardAD, FernandezNF, DuanQ, WangZ, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic acids research. 2016;44: W90–W97. doi: 10.1093/nar/gkw37727141961, KuleshovMV., JonesMR, RouillardAD, FernandezNF, DuanQ, WangZ, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic acids research. 2016;44: W90–W97. doi: 10.1093/nar/gkw37727141961

  • Sean Shadle, Jun Zhong, Amy Campbell, M. Conerly, S. Jagannathan, Chao-Jen Wong, Timothy Morello, S. Maarel, S. Tapscott (2017)

    DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy

    PLoS Genetics, 13

  • R. Barrangou, C. Fremaux, H. Deveau, Melissa Richards, P. Boyaval, S. Moineau, D. Romero, P. Horvath (2007)

    CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes

    Science, 315

  • M. Bibikova, D. Carroll, D. Segal, J. Trautman, Jeff Smith, Yang-Gyun Kim, S. Chandrasegaran (2001)

    Stimulation of hom*ologous Recombination through Targeted Cleavage by Chimeric Nucleases

    Molecular and Cellular Biology, 21

  • Petr Dmitriev, Y. Saada, Carla Dib, E. Ansseau, Ana Barat, Aline Hamade, P. Dessen, Thomas Robert, V. Lazar, R. Louzada, C. Dupuy, V. Zakharova, G. Carnac, M. Lipinski, Y. Vassetzky (2016)

    DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients.

    Free radical biology & medicine, 99

  • (RashnonejadA, Amini-ChermahiniG, TaylorNK, WeinN, HarperSQ. Designed U7 snRNAs inhibit DUX4 expression and improve FSHD-associated outcomes in DUX4 overexpressing cells and FSHD patient myotubes. Molecular Therapy—Nucleic Acids. 2021;23: 476–486. doi: 10.1016/j.omtn.2020.12.00433510937)

    RashnonejadA, Amini-ChermahiniG, TaylorNK, WeinN, HarperSQ. Designed U7 snRNAs inhibit DUX4 expression and improve FSHD-associated outcomes in DUX4 overexpressing cells and FSHD patient myotubes. Molecular Therapy—Nucleic Acids. 2021;23: 476–486. doi: 10.1016/j.omtn.2020.12.00433510937

    RashnonejadA, Amini-ChermahiniG, TaylorNK, WeinN, HarperSQ. Designed U7 snRNAs inhibit DUX4 expression and improve FSHD-associated outcomes in DUX4 overexpressing cells and FSHD patient myotubes. Molecular Therapy—Nucleic Acids. 2021;23: 476–486. doi: 10.1016/j.omtn.2020.12.00433510937, RashnonejadA, Amini-ChermahiniG, TaylorNK, WeinN, HarperSQ. Designed U7 snRNAs inhibit DUX4 expression and improve FSHD-associated outcomes in DUX4 overexpressing cells and FSHD patient myotubes. Molecular Therapy—Nucleic Acids. 2021;23: 476–486. doi: 10.1016/j.omtn.2020.12.00433510937

  • V. Blomen, P. Májek, L. Jae, J. Bigenzahn, Joppe Nieuwenhuis, J. Staring, R. Sacco, Ferdy Diemen, N. Olk, Alexey Stukalov, C. Marceau, H. Janssen, J. Carette, K. Bennett, J. Colinge, G. Superti-Furga, T. Brummelkamp (2015)

    Gene essentiality and synthetic lethality in haploid human cells

    Science, 350

  • A Lek (2020)

    9

    Science Translational Medicine, 12

  • S. Urlinger, U. Baron, Marion Thellmann, M. Hasan, H. Bujard, W. Hillen (2000)

    Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity.

    Proceedings of the National Academy of Sciences of the United States of America, 97 14

  • M. Bibikova, Mary Golic, K. Golic, D. Carroll (2002)

    Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases.

    Genetics, 161 3

  • L. Jae, M. Raaben, A. Herbert, A. Kuehne, A. Wirchnianski, Timothy Soh, S. Stubbs, H. Janssen, M. Damme, P. Saftig, S. Whelan, J. Dye, T. Brummelkamp (2014)

    Lassa virus entry requires a trigger-induced receptor switch

    Science, 344

  • (RickardAM, PetekLM, MillerDG. Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways. Human Molecular Genetics. 2015;24: 5901–5914. doi: 10.1093/hmg/ddv31526246499)

    RickardAM, PetekLM, MillerDG. Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways. Human Molecular Genetics. 2015;24: 5901–5914. doi: 10.1093/hmg/ddv31526246499

    RickardAM, PetekLM, MillerDG. Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways. Human Molecular Genetics. 2015;24: 5901–5914. doi: 10.1093/hmg/ddv31526246499, RickardAM, PetekLM, MillerDG. Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways. Human Molecular Genetics. 2015;24: 5901–5914. doi: 10.1093/hmg/ddv31526246499

  • MI Love (2014)

    1

    Genome Biology, 15

  • A. Rashnonejad, G. Amini-Chermahini, N. Taylor, N. Wein, S. Harper (2020)

    Designed U7 snRNAs inhibit DUX4 expression and improve FSHD-associated outcomes in DUX4 overexpressing cells and FSHD patient myotubes

    Molecular Therapy. Nucleic Acids, 23

  • Y. Kim, Jooyeun Cha, S. Chandrasegaran (1996)

    Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain.

    Proceedings of the National Academy of Sciences of the United States of America, 93 3

  • S. Choi, Micah Gearhart, Ziyou Cui, D. Bosnakovski, Minjee Kim, Natalie Schennum, M. Kyba (2016)

    DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes

    Nucleic Acids Research, 44

  • T. Dull, R. Zufferey, M. Kelly, R. Mandel, M. Nguyen, D. Trono, L. Naldini (1998)

    A Third-Generation Lentivirus Vector with a Conditional Packaging System

    Journal of Virology, 72

  • (TsumagariK, ChangSC, LaceyM, BaribaultC, ChitturS V., SowdenJ, et al. Gene expression during normal and FSHD myogenesis. BMC Medical Genomics. 2011;4. doi: 10.1186/1755-8794-4-421223598)

    TsumagariK, ChangSC, LaceyM, BaribaultC, ChitturS V., SowdenJ, et al. Gene expression during normal and FSHD myogenesis. BMC Medical Genomics. 2011;4. doi: 10.1186/1755-8794-4-421223598

    TsumagariK, ChangSC, LaceyM, BaribaultC, ChitturS V., SowdenJ, et al. Gene expression during normal and FSHD myogenesis. BMC Medical Genomics. 2011;4. doi: 10.1186/1755-8794-4-421223598, TsumagariK, ChangSC, LaceyM, BaribaultC, ChitturS V., SowdenJ, et al. Gene expression during normal and FSHD myogenesis. BMC Medical Genomics. 2011;4. doi: 10.1186/1755-8794-4-421223598

  • (LemmersRJLF, VlietPJ Van Der, KloosterR, CamañoP, DauwerseJG, SniderL, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science. 2010;329: 1650–1653. doi: 10.1126/science.118904420724583)

    LemmersRJLF, VlietPJ Van Der, KloosterR, CamañoP, DauwerseJG, SniderL, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science. 2010;329: 1650–1653. doi: 10.1126/science.118904420724583

    LemmersRJLF, VlietPJ Van Der, KloosterR, CamañoP, DauwerseJG, SniderL, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science. 2010;329: 1650–1653. doi: 10.1126/science.118904420724583, LemmersRJLF, VlietPJ Van Der, KloosterR, CamañoP, DauwerseJG, SniderL, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science. 2010;329: 1650–1653. doi: 10.1126/science.118904420724583

  • Maxime Ferreboeuf, V. Mariot, Bettina Bessières, Alexandre Vasiljevic, T. Attié-Bitach, Sophie Collardeau, J. Morere, S. Roche, F. Magdinier, Jérôme Robin-Ducellier, Philippe Rameau, Sandra Whalen, Claude Desnuelle, S. Sacconi, V. Mouly, G. Butler-Browne, J. Dumonceaux (2013)

    P.16.3 DUX4 and DUX4 downstream target genes are expressed in fetal FSHD muscles

    Neuromuscular Disorders, 23

  • Rabi Tawil, S. Maarel (2006)

    Facioscapulohumeral muscular dystrophy

    Muscle & Nerve, 34

  • LT Jae (2014)

    479

    , 340

  • (LiT, HuangS, JiangWZ, WrightD, SpaldingMH, WeeksDP, et al. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain.Nucleic Acids Research. 2011;39: 359–372. doi: 10.1093/nar/gkq70420699274)

    LiT, HuangS, JiangWZ, WrightD, SpaldingMH, WeeksDP, et al. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain.Nucleic Acids Research. 2011;39: 359–372. doi: 10.1093/nar/gkq70420699274

    LiT, HuangS, JiangWZ, WrightD, SpaldingMH, WeeksDP, et al. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain.Nucleic Acids Research. 2011;39: 359–372. doi: 10.1093/nar/gkq70420699274, LiT, HuangS, JiangWZ, WrightD, SpaldingMH, WeeksDP, et al. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain.Nucleic Acids Research. 2011;39: 359–372. doi: 10.1093/nar/gkq70420699274

  • (ShenMW, ArbabM, HsuJY, WorstellD, SannieJ, KrabbeO, et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. 2018;563: 646–651. doi: 10.1038/s41586-018-0686-x30405244)

    ShenMW, ArbabM, HsuJY, WorstellD, SannieJ, KrabbeO, et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. 2018;563: 646–651. doi: 10.1038/s41586-018-0686-x30405244

    ShenMW, ArbabM, HsuJY, WorstellD, SannieJ, KrabbeO, et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. 2018;563: 646–651. doi: 10.1038/s41586-018-0686-x30405244, ShenMW, ArbabM, HsuJY, WorstellD, SannieJ, KrabbeO, et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. 2018;563: 646–651. doi: 10.1038/s41586-018-0686-x30405244

  • (ChoiSH, GearhartMD, CuiZ, BosnakovskiD, KimM, SchennumN, et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Research. 2016;44: 5161–5173. doi: 10.1093/nar/gkw14126951377)

    ChoiSH, GearhartMD, CuiZ, BosnakovskiD, KimM, SchennumN, et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Research. 2016;44: 5161–5173. doi: 10.1093/nar/gkw14126951377

    ChoiSH, GearhartMD, CuiZ, BosnakovskiD, KimM, SchennumN, et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Research. 2016;44: 5161–5173. doi: 10.1093/nar/gkw14126951377, ChoiSH, GearhartMD, CuiZ, BosnakovskiD, KimM, SchennumN, et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Research. 2016;44: 5161–5173. doi: 10.1093/nar/gkw14126951377

  • (FerreboeufM, MariotV, BessièresB, VasiljevicA, Attié-BitachT, CollardeauS, et al. DUX4 and DUX4 downstream target genes are expressed in fetal FSHD muscles. Human Molecular Genetics. 2014;23: 171–181. doi: 10.1093/hmg/ddt40923966205)

    FerreboeufM, MariotV, BessièresB, VasiljevicA, Attié-BitachT, CollardeauS, et al. DUX4 and DUX4 downstream target genes are expressed in fetal FSHD muscles. Human Molecular Genetics. 2014;23: 171–181. doi: 10.1093/hmg/ddt40923966205

    FerreboeufM, MariotV, BessièresB, VasiljevicA, Attié-BitachT, CollardeauS, et al. DUX4 and DUX4 downstream target genes are expressed in fetal FSHD muscles. Human Molecular Genetics. 2014;23: 171–181. doi: 10.1093/hmg/ddt40923966205, FerreboeufM, MariotV, BessièresB, VasiljevicA, Attié-BitachT, CollardeauS, et al. DUX4 and DUX4 downstream target genes are expressed in fetal FSHD muscles. Human Molecular Genetics. 2014;23: 171–181. doi: 10.1093/hmg/ddt40923966205

  • G. Cullot, J. Boutin, J. Toutain, F. Prat, P. Pennamen, C. Rooryck, Martin Teichmann, Emilie Rousseau, I. Lamrissi‐Garcia, V. Guyonnet-Duperat, Alice Bibeyran, Magalie Lalanne, V. Prouzet-Mauléon, B. Turcq, C. Ged, J. Blouin, E. Richard, S. Dabernat, F. Moreau-Gaudry, A. Bedel (2019)

    CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations

    Nature Communications, 10

  • (UrasakiA, MorvanG, KawakamiK. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. 2006;174: 639–649. doi: 10.1534/genetics.106.06024416959904)

    UrasakiA, MorvanG, KawakamiK. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. 2006;174: 639–649. doi: 10.1534/genetics.106.06024416959904

    UrasakiA, MorvanG, KawakamiK. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. 2006;174: 639–649. doi: 10.1534/genetics.106.06024416959904, UrasakiA, MorvanG, KawakamiK. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. 2006;174: 639–649. doi: 10.1534/genetics.106.06024416959904

  • (WinokurST, ChenYW, MasnyPS, MartinJH, EhmsenJT, TapscottSJ, et al. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Human Molecular Genetics. 2003;12: 2895–2907. doi: 10.1093/hmg/ddg32714519683)

    WinokurST, ChenYW, MasnyPS, MartinJH, EhmsenJT, TapscottSJ, et al. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Human Molecular Genetics. 2003;12: 2895–2907. doi: 10.1093/hmg/ddg32714519683

    WinokurST, ChenYW, MasnyPS, MartinJH, EhmsenJT, TapscottSJ, et al. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Human Molecular Genetics. 2003;12: 2895–2907. doi: 10.1093/hmg/ddg32714519683, WinokurST, ChenYW, MasnyPS, MartinJH, EhmsenJT, TapscottSJ, et al. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Human Molecular Genetics. 2003;12: 2895–2907. doi: 10.1093/hmg/ddg32714519683

  • Daniel Wolfe, S. Dudek, M. Ritchie, S. Pendergrass (2013)

    Visualizing genomic information across chromosomes with PhenoGram

    BioData Mining, 6

  • (IacoA De, PlanetE, ColuccioA, VerpS, DucJ, TronoD. A family of double-homeodomain transcription factors regulates zygotic genome activation in placental mammals.Nature Genetics. 2017;49: 941–945. doi: 10.1038/ng.385828459456)

    IacoA De, PlanetE, ColuccioA, VerpS, DucJ, TronoD. A family of double-homeodomain transcription factors regulates zygotic genome activation in placental mammals.Nature Genetics. 2017;49: 941–945. doi: 10.1038/ng.385828459456

    IacoA De, PlanetE, ColuccioA, VerpS, DucJ, TronoD. A family of double-homeodomain transcription factors regulates zygotic genome activation in placental mammals.Nature Genetics. 2017;49: 941–945. doi: 10.1038/ng.385828459456, IacoA De, PlanetE, ColuccioA, VerpS, DucJ, TronoD. A family of double-homeodomain transcription factors regulates zygotic genome activation in placental mammals.Nature Genetics. 2017;49: 941–945. doi: 10.1038/ng.385828459456

  • (UrlingerS, BaronU, ThellmannM, HasanMT, BujardH, HillenW. Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity. Proceedings of the National Academy of Sciences of the United States of America. 2000;97: 7963–7968. doi: 10.1073/pnas.13019219710859354)

    UrlingerS, BaronU, ThellmannM, HasanMT, BujardH, HillenW. Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity. Proceedings of the National Academy of Sciences of the United States of America. 2000;97: 7963–7968. doi: 10.1073/pnas.13019219710859354

    UrlingerS, BaronU, ThellmannM, HasanMT, BujardH, HillenW. Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity. Proceedings of the National Academy of Sciences of the United States of America. 2000;97: 7963–7968. doi: 10.1073/pnas.13019219710859354, UrlingerS, BaronU, ThellmannM, HasanMT, BujardH, HillenW. Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity. Proceedings of the National Academy of Sciences of the United States of America. 2000;97: 7963–7968. doi: 10.1073/pnas.13019219710859354

  • Manjusha Dixit, E. Ansseau, A. Tassin, S. Winokur, R. Shi, H. Qian, S. Sauvage, C. Mattéotti, A. Acker, O. Leo, D. Figlewicz, M. Barro, D. Laoudj-Chenivesse, A. Belayew, F. Coppée, Yi-Wen Chen (2007)

    DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1

    Proceedings of the National Academy of Sciences, 104

  • C. Himeda, T. Jones, Peter Jones (2016)

    CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy.

    Molecular therapy : the journal of the American Society of Gene Therapy, 24 3

  • J. Deenen, Hisse Arnts, S. Maarel, G. Padberg, J. Verschuuren, E. Bakker, S. Weinreich, A. Verbeek, B. Engelen (2014)

    Population-based incidence and prevalence of facioscapulohumeral dystrophy

    Neurology, 83

  • (RongY, NakamuraS, HirataT, MotookaD, LiuYS, HeZA, et al. Genome-wide screening of genes required for glycosylphosphatidylinositol biosynthesis.PLoS ONE. 2015;10: 1–18. doi: 10.1371/journal.pone.013855326383639)

    RongY, NakamuraS, HirataT, MotookaD, LiuYS, HeZA, et al. Genome-wide screening of genes required for glycosylphosphatidylinositol biosynthesis.PLoS ONE. 2015;10: 1–18. doi: 10.1371/journal.pone.013855326383639

    RongY, NakamuraS, HirataT, MotookaD, LiuYS, HeZA, et al. Genome-wide screening of genes required for glycosylphosphatidylinositol biosynthesis.PLoS ONE. 2015;10: 1–18. doi: 10.1371/journal.pone.013855326383639, RongY, NakamuraS, HirataT, MotookaD, LiuYS, HeZA, et al. Genome-wide screening of genes required for glycosylphosphatidylinositol biosynthesis.PLoS ONE. 2015;10: 1–18. doi: 10.1371/journal.pone.013855326383639

  • R. Mezzadra, Marjolein Bruijn, L. Jae, R. Gomez-Eerland, Anja Duursma, F. Scheeren, T. Brummelkamp, T. Schumacher (2019)

    SLFN11 can sensitize tumor cells towards IFN-γ-mediated T cell killing

    PLoS ONE, 14

  • Jeffrey Smith, Marina Bibikova, Frank Whitby, Attipalli Reddy, Attipalli Reddy, S. Chandrasegaran, Dana Carroll (2000)

    Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains.

    Nucleic acids research, 28 17

  • E Ansseau (2017)

    8

    Antisense oligonucleotides used to target the DUX4 mRNA as therapeutic approaches in faciosscapulohumeral muscular dystrophy

  • (BosnakovskiD, TosoEA, HartweckLM, MagliA, LeeHA, ThompsonER, et al. The DUX4 homeodomains mediate inhibition of myogenesis and are functionally exchangeable with the Pax7 homeodomain. Journal of Cell Science. 2017;130: 3685–3697. doi: 10.1242/jcs.20542728935672)

    BosnakovskiD, TosoEA, HartweckLM, MagliA, LeeHA, ThompsonER, et al. The DUX4 homeodomains mediate inhibition of myogenesis and are functionally exchangeable with the Pax7 homeodomain. Journal of Cell Science. 2017;130: 3685–3697. doi: 10.1242/jcs.20542728935672

    BosnakovskiD, TosoEA, HartweckLM, MagliA, LeeHA, ThompsonER, et al. The DUX4 homeodomains mediate inhibition of myogenesis and are functionally exchangeable with the Pax7 homeodomain. Journal of Cell Science. 2017;130: 3685–3697. doi: 10.1242/jcs.20542728935672, BosnakovskiD, TosoEA, HartweckLM, MagliA, LeeHA, ThompsonER, et al. The DUX4 homeodomains mediate inhibition of myogenesis and are functionally exchangeable with the Pax7 homeodomain. Journal of Cell Science. 2017;130: 3685–3697. doi: 10.1242/jcs.20542728935672

  • (MorgensDW, DeansRM, LiA, BassikMC. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nature Biotechnology. 2016;34: 634–636. doi: 10.1038/nbt.3567)

    MorgensDW, DeansRM, LiA, BassikMC. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nature Biotechnology. 2016;34: 634–636. doi: 10.1038/nbt.3567

    MorgensDW, DeansRM, LiA, BassikMC. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nature Biotechnology. 2016;34: 634–636. doi: 10.1038/nbt.3567, MorgensDW, DeansRM, LiA, BassikMC. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nature Biotechnology. 2016;34: 634–636. doi: 10.1038/nbt.3567

  • R. Luteijn, Ferdy Diemen, V. Blomen, I. Boer, Saravanan Sadasivam, T. Kuppevelt, I. Drexler, T. Brummelkamp, R. Lebbink, E. Wiertz (2019)

    A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection

    Journal of Virology, 93

  • P. Papatheodorou, J. Carette, G. Bell, Carsten Schwan, G. Guttenberg, T. Brummelkamp, K. Aktories (2011)

    Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT)

    Proceedings of the National Academy of Sciences, 108

  • (DullT, ZuffereyR, KellyM, MandelRJ, NguyenM, TronoD, et al. A third-generation lentivirus vector with a conditional packaging system. Journal of virology. 1998;72: 8463–71. doi: 10.1128/JVI.72.11.8463-8471.19989765382)

    DullT, ZuffereyR, KellyM, MandelRJ, NguyenM, TronoD, et al. A third-generation lentivirus vector with a conditional packaging system. Journal of virology. 1998;72: 8463–71. doi: 10.1128/JVI.72.11.8463-8471.19989765382

    DullT, ZuffereyR, KellyM, MandelRJ, NguyenM, TronoD, et al. A third-generation lentivirus vector with a conditional packaging system. Journal of virology. 1998;72: 8463–71. doi: 10.1128/JVI.72.11.8463-8471.19989765382, DullT, ZuffereyR, KellyM, MandelRJ, NguyenM, TronoD, et al. A third-generation lentivirus vector with a conditional packaging system. Journal of virology. 1998;72: 8463–71. doi: 10.1128/JVI.72.11.8463-8471.19989765382

  • A. Iaco, E. Planet, Andrea Coluccio, Sonia Verp, Julien Duc, D. Trono (2017)

    A family of double-homeodomain transcription factors regulates zygotic genome activation in placental mammals

    Nature genetics, 49

  • Amanda Rickard, Lisa Petek, Daniel Miller (2015)

    Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways.

    Human molecular genetics, 24 20

  • P. Hendrickson, J. Dorais, J. Dorais, Edward Grow, Jennifer Whiddon, Jong-won Lim, Candice Wike, Bradley Weaver, Christian Pflueger, B. Emery, A. Wilcox, D. Nix, C. Peterson, S. Tapscott, D. Carrell, B. Cairns (2017)

    Conserved roles for murine DUX and human DUX4 in activating cleavage stage genes and MERVL/HERVL retrotransposons

    Nature genetics, 49

  • Tingyu Li, Sheng Huang, W. Jiang, D. Wright, M. Spalding, D. Weeks, Bing Yang (2010)

    TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain

    Nucleic Acids Research, 39

  • (DeenenJCW, ArntsH, Van Der MaarelSM, PadbergGW, VerschuurenJJGM, BakkerE, et al. Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology. 2014;83: 1056–1059. doi: 10.1212/WNL.000000000000079725122204)

    DeenenJCW, ArntsH, Van Der MaarelSM, PadbergGW, VerschuurenJJGM, BakkerE, et al. Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology. 2014;83: 1056–1059. doi: 10.1212/WNL.000000000000079725122204

    DeenenJCW, ArntsH, Van Der MaarelSM, PadbergGW, VerschuurenJJGM, BakkerE, et al. Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology. 2014;83: 1056–1059. doi: 10.1212/WNL.000000000000079725122204, DeenenJCW, ArntsH, Van Der MaarelSM, PadbergGW, VerschuurenJJGM, BakkerE, et al. Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology. 2014;83: 1056–1059. doi: 10.1212/WNL.000000000000079725122204

  • E. Chen, Christopher Tan, Y. Kou, Qiaonan Duan, Zichen Wang, G. Meirelles, N. Clark, Avi Ma’ayan (2013)

    Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool

    BMC Bioinformatics, 14

  • D. Bosnakovski, S. Choi, J. Strasser, E. Toso, M. Walters, M. Kyba (2014)

    High-throughput screening identifies inhibitors of DUX4-induced myoblast toxicity

    Skeletal Muscle, 4

  • (SansonKR, HannaRE, HegdeM, DonovanKF, StrandC, SullenderME, et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nature Communications. 2018;9: 1–15. doi: 10.1038/s41467-017-02088-w29317637)

    SansonKR, HannaRE, HegdeM, DonovanKF, StrandC, SullenderME, et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nature Communications. 2018;9: 1–15. doi: 10.1038/s41467-017-02088-w29317637

    SansonKR, HannaRE, HegdeM, DonovanKF, StrandC, SullenderME, et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nature Communications. 2018;9: 1–15. doi: 10.1038/s41467-017-02088-w29317637, SansonKR, HannaRE, HegdeM, DonovanKF, StrandC, SullenderME, et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nature Communications. 2018;9: 1–15. doi: 10.1038/s41467-017-02088-w29317637

  • N. Gerhards, V. Blomen, M. Mutlu, Joppe Nieuwenhuis, D. Howald, C. Guyader, J. Jonkers, T. Brummelkamp, S. Rottenberg (2018)

    Haploid genetic screens identify genetic vulnerabilities to microtubule‐targeting agents

    Molecular Oncology, 12

  • (MussolinoC, MorbitzerR, LütgeF, DannemannN, LahayeT, CathomenT. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research. 2011;39: 9283–9293. doi: 10.1093/nar/gkr59721813459)

    MussolinoC, MorbitzerR, LütgeF, DannemannN, LahayeT, CathomenT. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research. 2011;39: 9283–9293. doi: 10.1093/nar/gkr59721813459

    MussolinoC, MorbitzerR, LütgeF, DannemannN, LahayeT, CathomenT. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research. 2011;39: 9283–9293. doi: 10.1093/nar/gkr59721813459, MussolinoC, MorbitzerR, LütgeF, DannemannN, LahayeT, CathomenT. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research. 2011;39: 9283–9293. doi: 10.1093/nar/gkr59721813459

  • T. Jones, C. Himeda, D. Perez, Peter Jones (2017)

    Large family cohorts of lymphoblastoid cells provide a new cellular model for investigating facioscapulohumeral muscular dystrophy

    Neuromuscular Disorders, 27

  • (WolfeD, DudekS, RitchieMD, PendergrassSA. Visualizing genomic information across chromosomes with PhenoGram. BioData Mining. 2013;6: 1–12. doi: 10.1186/1756-0381-6-123294634)

    WolfeD, DudekS, RitchieMD, PendergrassSA. Visualizing genomic information across chromosomes with PhenoGram. BioData Mining. 2013;6: 1–12. doi: 10.1186/1756-0381-6-123294634

    WolfeD, DudekS, RitchieMD, PendergrassSA. Visualizing genomic information across chromosomes with PhenoGram. BioData Mining. 2013;6: 1–12. doi: 10.1186/1756-0381-6-123294634, WolfeD, DudekS, RitchieMD, PendergrassSA. Visualizing genomic information across chromosomes with PhenoGram. BioData Mining. 2013;6: 1–12. doi: 10.1186/1756-0381-6-123294634

  • John Doench, Nicoló Fusi, Meagan Sullender, Mudra Hegde, Emma Vaimberg, Katherine Donovan, Ian Smith, Z. Tothova, Craig Wilen, R. Orchard, H. Virgin, J. Listgarten, D. Root (2015)

    Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9

    Nature biotechnology, 34

  • Yao Rong, S. Nakamura, T. Hirata, D. Motooka, Yi-Shi Liu, Zeng’an He, Xiao-Dong Gao, Y. Maeda, T. Kinosh*ta, Morihisa Fujita (2015)

    Genome-Wide Screening of Genes Required for Glycosylphosphatidylinositol Biosynthesis

    PLoS ONE, 10

  • (GengLN, YaoZ, SniderL, FongAP, CechJN, YoungJM, et al. DUX4 Activates Germline Genes, Retroelements, and Immune Mediators: Implications for Facioscapulohumeral Dystrophy. Developmental Cell. 2012;22: 38–51. doi: 10.1016/j.devcel.2011.11.01322209328)

    GengLN, YaoZ, SniderL, FongAP, CechJN, YoungJM, et al. DUX4 Activates Germline Genes, Retroelements, and Immune Mediators: Implications for Facioscapulohumeral Dystrophy. Developmental Cell. 2012;22: 38–51. doi: 10.1016/j.devcel.2011.11.01322209328

    GengLN, YaoZ, SniderL, FongAP, CechJN, YoungJM, et al. DUX4 Activates Germline Genes, Retroelements, and Immune Mediators: Implications for Facioscapulohumeral Dystrophy. Developmental Cell. 2012;22: 38–51. doi: 10.1016/j.devcel.2011.11.01322209328, GengLN, YaoZ, SniderL, FongAP, CechJN, YoungJM, et al. DUX4 Activates Germline Genes, Retroelements, and Immune Mediators: Implications for Facioscapulohumeral Dystrophy. Developmental Cell. 2012;22: 38–51. doi: 10.1016/j.devcel.2011.11.01322209328

  • C. Banerji, M. Panamarova, P. Zammit (2019)

    Lymphocytes contribute to DUX4 target genes in FSHD muscle biopsies

    bioRxiv

  • Christelle Robert, M. Watson (2015)

    Errors in RNA-Seq quantification affect genes of relevance to human disease

    Genome Biology, 16

  • (BibikovaM, CarrollD, SegalDJ, TrautmanJK, SmithJ, KimY-G, et al. Stimulation of hom*ologous Recombination through Targeted Cleavage by Chimeric Nucleases. Molecular and Cellular Biology. 2001;21: 289–297. doi: 10.1128/MCB.21.1.289-297.200111113203)

    BibikovaM, CarrollD, SegalDJ, TrautmanJK, SmithJ, KimY-G, et al. Stimulation of hom*ologous Recombination through Targeted Cleavage by Chimeric Nucleases. Molecular and Cellular Biology. 2001;21: 289–297. doi: 10.1128/MCB.21.1.289-297.200111113203

    BibikovaM, CarrollD, SegalDJ, TrautmanJK, SmithJ, KimY-G, et al. Stimulation of hom*ologous Recombination through Targeted Cleavage by Chimeric Nucleases. Molecular and Cellular Biology. 2001;21: 289–297. doi: 10.1128/MCB.21.1.289-297.200111113203, BibikovaM, CarrollD, SegalDJ, TrautmanJK, SmithJ, KimY-G, et al. Stimulation of hom*ologous Recombination through Targeted Cleavage by Chimeric Nucleases. Molecular and Cellular Biology. 2001;21: 289–297. doi: 10.1128/MCB.21.1.289-297.200111113203

  • (BosnakovskiD, GearhartMD, TosoEA, RechtOO, CucakA, JainAK, et al. p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy. DMM Disease Models and Mechanisms. 2017;10: 1211–1216. doi: 10.1242/dmm.03006428754837)

    BosnakovskiD, GearhartMD, TosoEA, RechtOO, CucakA, JainAK, et al. p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy. DMM Disease Models and Mechanisms. 2017;10: 1211–1216. doi: 10.1242/dmm.03006428754837

    BosnakovskiD, GearhartMD, TosoEA, RechtOO, CucakA, JainAK, et al. p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy. DMM Disease Models and Mechanisms. 2017;10: 1211–1216. doi: 10.1242/dmm.03006428754837, BosnakovskiD, GearhartMD, TosoEA, RechtOO, CucakA, JainAK, et al. p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy. DMM Disease Models and Mechanisms. 2017;10: 1211–1216. doi: 10.1242/dmm.03006428754837

  • (KimYG, KimPS, HerbertA, RichA. Construction of a Z-DNA-specific restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America. 1997;94: 12875–12879. doi: 10.1073/pnas.94.24.128759371768)

    KimYG, KimPS, HerbertA, RichA. Construction of a Z-DNA-specific restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America. 1997;94: 12875–12879. doi: 10.1073/pnas.94.24.128759371768

    KimYG, KimPS, HerbertA, RichA. Construction of a Z-DNA-specific restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America. 1997;94: 12875–12879. doi: 10.1073/pnas.94.24.128759371768, KimYG, KimPS, HerbertA, RichA. Construction of a Z-DNA-specific restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America. 1997;94: 12875–12879. doi: 10.1073/pnas.94.24.128759371768

  • (SmithJ, BibikovaM, WhitbyF, ReddyA, ChandrasegaranS, CarrollD. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Research. 2000;28: 3361–3369. doi: 10.1093/nar/28.17.336110954606)

    SmithJ, BibikovaM, WhitbyF, ReddyA, ChandrasegaranS, CarrollD. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Research. 2000;28: 3361–3369. doi: 10.1093/nar/28.17.336110954606

    SmithJ, BibikovaM, WhitbyF, ReddyA, ChandrasegaranS, CarrollD. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Research. 2000;28: 3361–3369. doi: 10.1093/nar/28.17.336110954606, SmithJ, BibikovaM, WhitbyF, ReddyA, ChandrasegaranS, CarrollD. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Research. 2000;28: 3361–3369. doi: 10.1093/nar/28.17.336110954606

  • (Agha-Mohammadi S, O’MalleyM, EtemadA, WangZ, XiaoX, LotzeMT. Second-generation tetracycline-regulatable promoter: Repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. Journal of Gene Medicine. 2004;6: 817–828. doi: 10.1002/jgm.56615241789)

    Agha-Mohammadi S, O’MalleyM, EtemadA, WangZ, XiaoX, LotzeMT. Second-generation tetracycline-regulatable promoter: Repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. Journal of Gene Medicine. 2004;6: 817–828. doi: 10.1002/jgm.56615241789

    Agha-Mohammadi S, O’MalleyM, EtemadA, WangZ, XiaoX, LotzeMT. Second-generation tetracycline-regulatable promoter: Repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. Journal of Gene Medicine. 2004;6: 817–828. doi: 10.1002/jgm.56615241789, Agha-Mohammadi S, O’MalleyM, EtemadA, WangZ, XiaoX, LotzeMT. Second-generation tetracycline-regulatable promoter: Repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. Journal of Gene Medicine. 2004;6: 817–828. doi: 10.1002/jgm.56615241789

  • C. Banerji, P. Knopp, L. Moyle, S. Severini, R. Orrell, A. Teschendorff, P. Zammit (2015)

    β-catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy

    Journal of The Royal Society Interface, 12

  • M. Jinek, Alexandra East, Aaron Cheng, Steven Lin, E. Ma, J. Doudna (2013)

    RNA-programmed genome editing in human cells

    eLife, 2

  • D Bosnakovski (2017)

    1211

    DMM Disease Models and Mechanisms, 10

  • (WhiddonJL, LangfordAT, WongCJ, ZhongJW, TapscottSJ. Conservation and innovation in the DUX4-family gene network. Nature Genetics. 2017;49: 935–940. doi: 10.1038/ng.384628459454)

    WhiddonJL, LangfordAT, WongCJ, ZhongJW, TapscottSJ. Conservation and innovation in the DUX4-family gene network. Nature Genetics. 2017;49: 935–940. doi: 10.1038/ng.384628459454

    WhiddonJL, LangfordAT, WongCJ, ZhongJW, TapscottSJ. Conservation and innovation in the DUX4-family gene network. Nature Genetics. 2017;49: 935–940. doi: 10.1038/ng.384628459454, WhiddonJL, LangfordAT, WongCJ, ZhongJW, TapscottSJ. Conservation and innovation in the DUX4-family gene network. Nature Genetics. 2017;49: 935–940. doi: 10.1038/ng.384628459454

  • K Tsumagari (2011)

    4

    BMC Medical Genomics

  • R. Lemmers, Patrick Vliet, J. Balog, J. Goeman, W. Arindrarto, Y. Krom, K. Straasheijm, Rashmie Debipersad, Gizem Özel, J. Sowden, L. Snider, K. Mul, S. Sacconi, B. Engelen, S. Tapscott, R. Tawil, S. Maarel (2017)

    Deep characterization of a common D4Z4 variant identifies biallelic DUX4 expression as a modifier for disease penetrance in FSHD2

    European Journal of Human Genetics, 26

  • JSL Yu (2019)

    164

    Genome-wide CRISPR-Cas9 screening in mammalian cells

  • Jeffrey Miller, Siyuan Tan, Guijuan Qiao, Kyle Barlow, Jianbin Wang, Danny Xia, Xiangdong Meng, David Paschon, Elo Leung, Sarah Hinkley, Gladys Dulay, Kevin Hua, Irina Ankoudinova, G. Cost, F. Urnov, Steve Zhang, M. Holmes, Lei Zhang, P. Gregory, E. Rebar (2011)

    A TALE nuclease architecture for efficient genome editing

    Nature Biotechnology, 29

  • (FengQ, SniderL, JagannathanS, TawilR, van der MaarelSM, TapscottSJ, et al. A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy.eLife. 2015;2015: 1–13. doi: 10.7554/eLife.0499625564732)

    FengQ, SniderL, JagannathanS, TawilR, van der MaarelSM, TapscottSJ, et al. A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy.eLife. 2015;2015: 1–13. doi: 10.7554/eLife.0499625564732

    FengQ, SniderL, JagannathanS, TawilR, van der MaarelSM, TapscottSJ, et al. A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy.eLife. 2015;2015: 1–13. doi: 10.7554/eLife.0499625564732, FengQ, SniderL, JagannathanS, TawilR, van der MaarelSM, TapscottSJ, et al. A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy.eLife. 2015;2015: 1–13. doi: 10.7554/eLife.0499625564732

  • RD Luteijn (2019)

    93

    Journal of Virology

  • Patrick Essletzbichler, T. Konopka, Federica Santoro, Doris Chen, Bianca Gapp, R. Kralovics, T. Brummelkamp, S. Nijman, T. Bürckstümmer (2014)

    Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line

    Genome Research, 24

  • Koji Tsumagari, Shao-Chi Chang, M. Lacey, Carl Baribault, S. Chittur, J. Sowden, R. Tawil, G. Crawford, M. Ehrlich (2011)

    Gene expression during normal and FSHD myogenesis

    BMC Medical Genomics, 4

  • G. Gasiunas, R. Barrangou, P. Horvath, V. Šikšnys (2012)

    Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria

    Proceedings of the National Academy of Sciences, 109

  • (GerhardsNM, BlomenVA, MutluM, NieuwenhuisJ, HowaldD, GuyaderC, et al. Haploid genetic screens identify genetic vulnerabilities to microtubule-targeting agents. Molecular Oncology. 2018;12: 953–971. doi: 10.1002/1878-0261.1230729689640)

    GerhardsNM, BlomenVA, MutluM, NieuwenhuisJ, HowaldD, GuyaderC, et al. Haploid genetic screens identify genetic vulnerabilities to microtubule-targeting agents. Molecular Oncology. 2018;12: 953–971. doi: 10.1002/1878-0261.1230729689640

    GerhardsNM, BlomenVA, MutluM, NieuwenhuisJ, HowaldD, GuyaderC, et al. Haploid genetic screens identify genetic vulnerabilities to microtubule-targeting agents. Molecular Oncology. 2018;12: 953–971. doi: 10.1002/1878-0261.1230729689640, GerhardsNM, BlomenVA, MutluM, NieuwenhuisJ, HowaldD, GuyaderC, et al. Haploid genetic screens identify genetic vulnerabilities to microtubule-targeting agents. Molecular Oncology. 2018;12: 953–971. doi: 10.1002/1878-0261.1230729689640

  • S. Vuoristo, C. Hydén-Granskog, M. Yoshihara, L. Gawriyski, A. Damdimopoulos, S. Bhagat, K. Hashimoto, K. Krjutškov, S. Ezer, P. Paluoja, K. Lundin, P. Paloviita, G. Recher, Vipin Ranga, T. Airenne, Mahlet Tamirat, Eeva-Mari Jouhilahti, T. Otonkoski, J. Tapanainen, H. Kawaji, Y. Murakawa, T. Bürglin, M. Varjosalo, Mark Johnson, T. Tuuri, S. Katayama, J. Kere (2019)

    DUX4 regulates oocyte to embryo transition in human

    bioRxiv

  • (HendricksonPG, DoráisJA, GrowEJ, WhiddonJL, LimJW, WikeCL, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nature Genetics. 2017;49: 925–934. doi: 10.1038/ng.384428459457)

    HendricksonPG, DoráisJA, GrowEJ, WhiddonJL, LimJW, WikeCL, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nature Genetics. 2017;49: 925–934. doi: 10.1038/ng.384428459457

    HendricksonPG, DoráisJA, GrowEJ, WhiddonJL, LimJW, WikeCL, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nature Genetics. 2017;49: 925–934. doi: 10.1038/ng.384428459457, HendricksonPG, DoráisJA, GrowEJ, WhiddonJL, LimJW, WikeCL, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nature Genetics. 2017;49: 925–934. doi: 10.1038/ng.384428459457

  • M van Attekum (2016)

    2

    Cell Death Discovery

  • DW Morgens (2016)

    634

    Nature Biotechnology, 34

  • (DoenchJG, FusiN, SullenderM, HegdeM, VaimbergEW, DonovanKF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology. 2016;34: 184–191. doi: 10.1038/nbt.343726780180)

    DoenchJG, FusiN, SullenderM, HegdeM, VaimbergEW, DonovanKF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology. 2016;34: 184–191. doi: 10.1038/nbt.343726780180

    DoenchJG, FusiN, SullenderM, HegdeM, VaimbergEW, DonovanKF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology. 2016;34: 184–191. doi: 10.1038/nbt.343726780180, DoenchJG, FusiN, SullenderM, HegdeM, VaimbergEW, DonovanKF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology. 2016;34: 184–191. doi: 10.1038/nbt.343726780180

  • (JaeLT, RaabenM, HerbertAS, KuehneAI, WirchnianskiAS, SohTK, et al. Lassa virus entry requires a trigger-induced receptor switch. Science. 2014;344: 1506–1510. doi: 10.1126/science.125248024970085)

    JaeLT, RaabenM, HerbertAS, KuehneAI, WirchnianskiAS, SohTK, et al. Lassa virus entry requires a trigger-induced receptor switch. Science. 2014;344: 1506–1510. doi: 10.1126/science.125248024970085

    JaeLT, RaabenM, HerbertAS, KuehneAI, WirchnianskiAS, SohTK, et al. Lassa virus entry requires a trigger-induced receptor switch. Science. 2014;344: 1506–1510. doi: 10.1126/science.125248024970085, JaeLT, RaabenM, HerbertAS, KuehneAI, WirchnianskiAS, SohTK, et al. Lassa virus entry requires a trigger-induced receptor switch. Science. 2014;344: 1506–1510. doi: 10.1126/science.125248024970085

  • D. Bosnakovski, E. Toso, L. Hartweck, A. Magli, Heather Lee, Eliza Thompson, A. Dandapat, R. Perlingeiro, M. Kyba (2017)

    The DUX4 homeodomains mediate inhibition of myogenesis and are functionally exchangeable with the Pax7 homeodomain

    Journal of Cell Science, 130

  • (Van Den HeuvelA, MahfouzA, KloetSL, BalogJ, Van EngelenBGM, TawilR, et al. Single-cell RNA sequencing in facioscapulohumeral muscular dystrophy disease etiology and development. Human Molecular Genetics. 2019;28: 1064–1075. doi: 10.1093/hmg/ddy40030445587)

    Van Den HeuvelA, MahfouzA, KloetSL, BalogJ, Van EngelenBGM, TawilR, et al. Single-cell RNA sequencing in facioscapulohumeral muscular dystrophy disease etiology and development. Human Molecular Genetics. 2019;28: 1064–1075. doi: 10.1093/hmg/ddy40030445587

    Van Den HeuvelA, MahfouzA, KloetSL, BalogJ, Van EngelenBGM, TawilR, et al. Single-cell RNA sequencing in facioscapulohumeral muscular dystrophy disease etiology and development. Human Molecular Genetics. 2019;28: 1064–1075. doi: 10.1093/hmg/ddy40030445587, Van Den HeuvelA, MahfouzA, KloetSL, BalogJ, Van EngelenBGM, TawilR, et al. Single-cell RNA sequencing in facioscapulohumeral muscular dystrophy disease etiology and development. Human Molecular Genetics. 2019;28: 1064–1075. doi: 10.1093/hmg/ddy40030445587

  • (GasiunasG, BarrangouR, HorvathP, SiksnysV. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America. 2012;109: 2579–2586. doi: 10.1073/pnas.110939710922308331)

    GasiunasG, BarrangouR, HorvathP, SiksnysV. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America. 2012;109: 2579–2586. doi: 10.1073/pnas.110939710922308331

    GasiunasG, BarrangouR, HorvathP, SiksnysV. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America. 2012;109: 2579–2586. doi: 10.1073/pnas.110939710922308331, GasiunasG, BarrangouR, HorvathP, SiksnysV. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America. 2012;109: 2579–2586. doi: 10.1073/pnas.110939710922308331

  • (SoutourinaJ.Transcription regulation by the Mediator complex. Nature Reviews Molecular Cell Biology. 2018;19: 262–274. doi: 10.1038/nrm.2017.11529209056)

    SoutourinaJ.Transcription regulation by the Mediator complex. Nature Reviews Molecular Cell Biology. 2018;19: 262–274. doi: 10.1038/nrm.2017.11529209056

    SoutourinaJ.Transcription regulation by the Mediator complex. Nature Reviews Molecular Cell Biology. 2018;19: 262–274. doi: 10.1038/nrm.2017.11529209056, SoutourinaJ.Transcription regulation by the Mediator complex. Nature Reviews Molecular Cell Biology. 2018;19: 262–274. doi: 10.1038/nrm.2017.11529209056

  • (BanerjiCRS, PanamarovaM, HebaishiH, WhiteRB, RelaixF, SeveriniS, et al. PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle. Nature Communications. 2017;8. doi: 10.1038/s41467-017-00021-928364116)

    BanerjiCRS, PanamarovaM, HebaishiH, WhiteRB, RelaixF, SeveriniS, et al. PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle. Nature Communications. 2017;8. doi: 10.1038/s41467-017-00021-928364116

    BanerjiCRS, PanamarovaM, HebaishiH, WhiteRB, RelaixF, SeveriniS, et al. PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle. Nature Communications. 2017;8. doi: 10.1038/s41467-017-00021-928364116, BanerjiCRS, PanamarovaM, HebaishiH, WhiteRB, RelaixF, SeveriniS, et al. PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle. Nature Communications. 2017;8. doi: 10.1038/s41467-017-00021-928364116

  • D. Bosnakovski, Micah Gearhart, E. Toso, Olivia Recht, Anja Cucak, Abhinav Jain, M. Barton, M. Kyba (2017)

    p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy

    Disease Models & Mechanisms, 10

  • (RobertC, WatsonM. Errors in RNA-Seq quantification affect genes of relevance to human disease. Genome Biology. 2015;16: 1–16. doi: 10.1186/s13059-014-0572-225583448)

    RobertC, WatsonM. Errors in RNA-Seq quantification affect genes of relevance to human disease. Genome Biology. 2015;16: 1–16. doi: 10.1186/s13059-014-0572-225583448

    RobertC, WatsonM. Errors in RNA-Seq quantification affect genes of relevance to human disease. Genome Biology. 2015;16: 1–16. doi: 10.1186/s13059-014-0572-225583448, RobertC, WatsonM. Errors in RNA-Seq quantification affect genes of relevance to human disease. Genome Biology. 2015;16: 1–16. doi: 10.1186/s13059-014-0572-225583448

  • (GrünD, LyubimovaA, KesterL, WiebrandsK, BasakO, SasakiN, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525: 251–255. doi: 10.1038/nature1496626287467)

    GrünD, LyubimovaA, KesterL, WiebrandsK, BasakO, SasakiN, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525: 251–255. doi: 10.1038/nature1496626287467

    GrünD, LyubimovaA, KesterL, WiebrandsK, BasakO, SasakiN, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525: 251–255. doi: 10.1038/nature1496626287467, GrünD, LyubimovaA, KesterL, WiebrandsK, BasakO, SasakiN, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525: 251–255. doi: 10.1038/nature1496626287467

  • (KimYG, ChaJ, ChandrasegaranS. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America. 1996;93: 1156–1160. doi: 10.1073/pnas.93.3.11568577732)

    KimYG, ChaJ, ChandrasegaranS. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America. 1996;93: 1156–1160. doi: 10.1073/pnas.93.3.11568577732

    KimYG, ChaJ, ChandrasegaranS. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America. 1996;93: 1156–1160. doi: 10.1073/pnas.93.3.11568577732, KimYG, ChaJ, ChandrasegaranS. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America. 1996;93: 1156–1160. doi: 10.1073/pnas.93.3.11568577732

  • (2015)

    Identification and characterization of essential genes in the human genome
  • Journals /
  • PLoS ONE /
  • Volume 17 Issue 2
  • Subject Areas
Considerations and practical implications of performing a phenotypic CRISPR/Cas survival screen, PLoS ONE | DeepDyve (2024)
Top Articles
Latest Posts
Article information

Author: Amb. Frankie Simonis

Last Updated:

Views: 6036

Rating: 4.6 / 5 (76 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Amb. Frankie Simonis

Birthday: 1998-02-19

Address: 64841 Delmar Isle, North Wiley, OR 74073

Phone: +17844167847676

Job: Forward IT Agent

Hobby: LARPing, Kitesurfing, Sewing, Digital arts, Sand art, Gardening, Dance

Introduction: My name is Amb. Frankie Simonis, I am a hilarious, enchanting, energetic, cooperative, innocent, cute, joyous person who loves writing and wants to share my knowledge and understanding with you.